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Abstract

Extreme events in society and nature, such as pandemic spikes or rogue waves, can have catastrophic
consequences. Characterizing extremes is difficult as they occur rarely, arise from seemingly benign
conditions, and belong to complex and often unknown infinite-dimensional systems. Such challenges
render attempts at characterizing them as moot. We address each of these difficulties by combining
novel training schemes in Bayesian experimental design (BED) with an ensemble of deep neural operators
(DNOs). This model-agnostic framework pairs a BED scheme that actively selects data for quantifying
extreme events with an ensemble of DNOs that approximate infinite-dimensional nonlinear operators.
We find that not only does this framework clearly beat Gaussian processes (GPs) but that 1) shallow
ensembles of just two members perform best ; 2) extremes are uncovered regardless of the state of initial
data (i.e. with or without extremes); 3) our method eliminates “double-descent” phenomena; 4) the
use of batches of suboptimal acquisition points compared to step-by-step global optima does not hinder
BED performance; and 5) Monte Carlo acquisition outperforms standard minimizers in high-dimensions.
Together these conclusions form the foundation of an AI-assisted experimental infrastructure that can
efficiently infer and pinpoint critical situations across many domains, from physical to societal systems.

1 Introduction
The grand challenge of predicting disasters remains an extremely difficult and unsolved problem [1]. Dis-
asters, such as pandemic spikes, wildfires or rogue waves1, are uniquely challenging to quantify. This is
because they are both rare and arise from an infinite set of physical conditions [4]. The proposition of
predicting extremes is analogous to finding a catastrophic needle in an infinite-dimensional haystack. This
calls for methods that can both discover extreme events and encode physical phenomena into their modeling
strategy. We present a Bayesian-inspired experimental design (BED) approach, described in detail in figure
5, that addresses both challenges by combining a probabilistic “discovery” algorithm [5] with a deep neural
operator designed to approximate physical systems [6].

Discovery of extremes is often simplified by distilling complex systems to their governing input variables
and relevant output variables. Within this interpretation, quantification of extremes has historically taken
the form of importance sampling, which uses a biasing distribution to identify regions of the input space
that exhibit extreme values [7, 8]. Unfortunately, these techniques often require additional and challenging
considerations for accurate results [9, 10, 11] and are static, lacking an ability to adjust to new information
gained through experiments. BED provides a dynamic approach that learns from acquired data before

∗Co-corresponding authors: pickering@mit.edu, sapsis@mit.edu
1Rogue waves are rare, giant waves that pose a danger to ships and offshore structures. The largest wave on record was 25.6

meters and hit the Draupner oil platform in the North Sea on January 1, 1995 [2]. The “most extreme” wave, three times the
size of surrounding waves, was 19.5 meters and observed off the coast of Ucluelet, British Columbia, on November 17, 2020 [3]
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a) Pinpoint Dangerous Pandemic Spikes b) Discover and Predict Rogue Ocean Waves

Figure 1: Inference of diverse extreme phenomena, from pandemic spikes to rogue ocean waves.
Our framework pinpoints the most dangerous (i.e., probable and extreme) pandemic scenarios (left) and
discovers rogue waves (right). The most dangerous pandemic scenarios are pinpointed by inferring the
number of new infections in time for a plurality of infection rate hypotheses. See figure 2 for more details.
Rogue waves are discovered and quantified for future prediction by uncovering the probable wave conditions
that non-linearly interact in time to emit rogue waves over three times their original size. We show one
example of this phenomena here and refer to figure 4 for more details on discovering these waves.

selecting new and intriguing input-output data. However, BED has not been a popular choice in rare-event
characterization due to a lack of 1) surrogate models that accurately generalize infinite-dimensional systems,
and 2) appropriately defined acquisition functions for selecting extreme data.

Deep neural operators (DNO), such as DeepONet [6], are built specifically for handling infinite-dimensional
systems and provide the ideal surrogate model for characterizing extremes. Unlike other ML approaches,
such as Gaussian Process Regression (GP), which map parameterizations of physical phenomenon, DNOs
directly map physical, infinite-dimensional functions to physical, infinite-dimensional functions. This leads to
drastic improvements in generalization to unseen data in high dimensions. Additionally, the neural network
backbone of DNOs mean they are intrinsically amenable to big data, unlike GPs which scale as the third
power of data size [12, 13]. However, DNOs utility for Bayesian experimental design is an open question
as DNOs do not explicitly provide a measure of uncertainty. We propose and show the efficacy of using an
ensemble of DNOs for uncertainty quantification and BED. Although much of the literature is skeptical of
the generality of ensembles to provide uncertainty estimates, recent viewpoints, [14] and notably [15], have
argued that DNN ensembles provide a very good approximation of the posterior. Our results support this
perspective.

Appropriately defined acquisition functions for uncovering extreme behavior are just as critical as the
chosen surrogate model. Recently, [16], in concert with several other works [17], [18], and [5], introduced a
class of probabilistic acquisition functions specifically designed for discovering extreme events. By combining
statistics of the input space along with statistics deduced from the surrogate model, the method can account
for both the importance of the output relative to the input. This approach significantly reduces the number
of input samples required to characterize extreme phenomena.

Equipped with these acquisition functions and an ensemble of DNOs, we will search high-dimensional
systems to discover extreme rogue waves and pinpoint dangerous pandemic scenarios, the two classes of
representative problems we consider herein.

2 Results
Figure 1 presents the key implications of our results, diagnosing the most dangerous future pandemic scenarios
(left) and discovering unassuming waves that lead to dangerous rogue waves (right). In each case, different
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a)

b)

Figure 2: Nailing the Tail: Accurate PDF and danger map convergence in 100 samples. a)
From left to right, the full deterministic response of new infections, f(θ), with respect to the two random
parameters, θ1 and θ2, the probability distribution of the random parameters θ1, θ2, the underlying danger
scores, w(θ), and the log10 of the log-pdf error for the experiment performed in b) using N = 2. The red
circles indicate the iterations shown in b) as well as additional results for a case with N = 8 ensembles.
b) One experiment of the 2D stochastic SIR model using three initial points and iterated 100 times. The
rows give the iteration number, 1, 5, 25, and 100 from top to bottom, respectively. The columns, from left
to right, are the DNO approximation of the objective function, µ(θ), given the training points (initial +
samples), the points sampled (where initial points are white x and sampled points are white circles) in the
2D parameter space and the predictive variance σ2(θ), the calculated danger scores w(θ), the acquisition
values a(θ) with the next acquisition point denoted by a red circle, and the DNO approximated and true
output PDFs. Animation links presenting all 100 iterations for N = 2 (here) and N = 8 (here).
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scenarios are tied to a “danger score” or likelihood ratio, as proposed by [5],

w(θ) =
pθ(θ)

pµ(µ(θ))
, (1)

where pθ(θ) is the probability density function (PDF) of the random variable input, θ, and pµ(µ(θ)) is the
posterior PDF of the mean, µ(θ), conditioned on the input,

pµ(µ(θ)) =

∫
θ

pµ(µ|θ)pθ(θ)|dθ. (2)

The likelihood ratio appropriately balances events that are likely and those that are extreme, hence it provides
a danger score for any given event. As denoted for the pandemic model in figure 1, small danger scores are
attributed to events that are either implausible or not extreme, while large danger scores relate to those that
are both likely and extreme. However, any system’s danger score requires knowledge of the posterior mean,
pµ(µ(θ)), which is generally unknown and must be learned. Our approach efficiently learns this underlying
distribution through dynamic application of the danger score with Bayesian experimental design and deep
neural operators.

2.1 Pinpointing Dangerous Pandemic Scenarios
Figure 2 a) and b) demonstrate how the proposed framework efficiently learns the underlying output dis-
tribution of infections for a stochastic pandemic model via dynamic and sequential application of danger
scores. The pandemic model is a simple Susceptible, Infected, Recovered (SIR) model with a two-dimensional
stochastic infection rate (see Appendix A). We assess success as the log-PDF error in figure 2 a) last column,
between the true output distribution and the approximated distribution from the trained DNO, figure 2 b)
last column. See Section 4.2.3 for details on computing the log-PDF error metric.

Despite an initialization of only three data points in the parameter space, our framework quickly identifies
the key regions of dynamical relevance and accurately recovers the significant properties of the underlying
system. Using an ensemble of just two DNOs (see Appendix D for DNO implementation and section 4.1.1
for our application of ensemble methods), the algorithm iteratively provides an estimation of the underlying
map (for computing pµ(µ(θ))), variance, σ2(θ), and a danger score, w(θ). Together, the danger score and
variance create the acquisition function, a(θ) = w(θ)σ2(θ), that identifies the point within the parameter
space with the greatest potential for learning the true output PDF. With the addition of each point, all
fields dynamically change and bring the true and approximated output PDFs within greater agreement. By
iteration 100, the danger scores have converged and the approximated output PDF is in error of less than
10−3. It is from this final danger score map that we derive the pandemic scenarios of figure 1 and note
that this map includes both dangerous pandemic spike scenarios and a breakout scenario with catastrophic
consequences. Additionally, figure 2 a) last column, shows that increasing the ensemble size to N = 8
provides little to no advantage.

The critical aspect of this approach is the algorithm’s reduction of a large parameter space to local
regions of danger. Only regions that provide significant contributions to the output PDF are considered.
Iteration 100 in figure 2 b) underscores this behavior. The algorithm has accurately reconstructed the output
PDF, yet it ignores a large region of high magnitude. This region, and the remaining unexplored regions,
provides negligible information and is neglected. This property is crucial for all systems where resources for
experiments or simulation are limited or costly and it permits a significant reduction in training/acquired
data as system complexity and dimensionality increases.

2.2 Discovering and Predicting Rogue Waves
We now scale the method to higher dimensions, larger datasets, and on a significantly more complex and
nonlinear system: a dissipative version of the nonlinear Schrödinger equation used to model rogue waves
(Appendix B). Figure 3 a)-c) shows that the DNO-BED framework, using the likelihood-weighted uncertainty
sampling (US-LW, a(θ) = w(θ)σ2(θ)), is superior for approximating the output PDF of the danger map (see
section 4.2.3 for NLS danger map definition) than using GPs (detailed in Appendix C) or other common BED
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a) 2D b) 4D c) 6D

d) 8D Batching e) 8D Ensemble Sizes, N f) 8D Variance of N

Figure 3: Accelerated convergence with DNOs plus extreme acquisition functions regardless
of dimensionality. a) − c) Median log-PDF of 10 independent and randomly initialized experiments,
where shaded regions denote one standard deviation for each case (i.e. ±σ(ε)), considering three acquisition
functions and GP and DNO surrogate models. a) − c) are for 2D, 4D and 6D initial conditions, while
d)− f) represent results from 8D initial conditions. Parallel acquisition and shallow ensembles bring
computational efficiency without performance loss. d) provides errors related to different batch sizes
per iteration, e) gives performance differences relative to the DNO ensemble size (100 iterations at batch
size n = 50), and f) presents the variance in log-PDF error of e).

sampling strategies, such as uncertainty sampling (US, a(θ) = σ2(θ)) and latin hypercube sampling (LHS).
This is highlighted as dimensionality (i.e., complexity, details on dimensionality provided in Appendix B) is
increased from 2D to 6D, where GPs begin to break down.

Figure 3 d) and e) provide two major implications for reducing the framework’s computational cost in
high dimensions: neither batching samples via parallel selection of multiple acquisition points, d), nor use
of shallow ensembles of only N = 2 members, e), hinders performance. Computed at 8D, figure 3 d) shows
that regardless of choosing 1,5,10, or even 25 points per iteration, over 300 samples, does not result in a loss
of performance with our framework. Further, we show in Appendix F that the use of Monte Carlo methods
are substantially more efficient for identifying optimal acquisition points than standard Python optimizers.
See Section 4.4 for details on batching implementation. These observations are a critical result for scaling
our framework, as more complex systems inevitably will require more data.

Unexpectedly, figure 3 e) shows that not only do just two ensemble members, N = 2, perform well,
they consistently outperform larger ensembles, N > 2. This result appears to disagree with the hypothesis
that a larger set of ensembles would provide uncertainty estimates with greater fidelity, leading to better
performance of our sequential search methods. Clearly, this is not the case from our results, yet neither
can it be that N = 2 ensembles provide a predictive variance of greater fidelity than N = 16. Figure 3
f) permits both concepts to be true. It shows that the greater the ensemble size, the smaller the variance
between the error trajectories of independent experiments. This observation agrees with the idea that larger
ensembles lead to a higher-fidelity predictive variance, but that greater fidelity leads to consistency rather
than performance for this sequential search technique. We believe using small N imposes a greedy search, in
a similar fashion to Thompson sampling [19]. Regardless, the consistent observation that N = 2 is not only
viable, but perhaps preferable, has massive implications for minimizing computational costs for ensemble
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approaches.

2.2.1 Rogue Wave Discovery in 20D

Equipped with the computational advantages of N = 2 ensemble members and large batch sizes (nb = 50),
figure 4 a)−b) shows that even at 20D our approach can recover the true output PDF. The other acquisition
functions not only perform poorly, but perform worse as more data is acquired. This phenomenon is known as
“double descent”, and many researchers have observed this behavior throughout machine learning procedures,
from classification to regression problems [20]. To our knowledge, this is the first observation of double
descent arising from the tails of the log-PDF error. Double descent is a product of over-fitting. More data
and greater complexity results in an over-parameterization of the provided data. Temporarily, this leads to
inferior generalization until providing the surrogate model with sufficiently larger datasets.

The proposed acquisition function clearly avoids double descent. We believe this is because of the efficient
selection of points that significantly contribute to the observed dynamics of the system. Unlike US-LW, the
points chosen by LHS and US methods are not inherently important to recovering the true PDF and therefore
induce misleading complexity to the underlying regression task. This observation further underscores the
value of our acquisition function, as it systematically prevents over-fitting and unwarranted model complexity.

Figure 4 a)− b) also show that regardless of the origin of initial conditions, containing extremes (chosen
by LHS) or without extremes (from the prior, pθ), the method achieves similar error metrics. Figure 4 c)
and d) present the physical manifestations of the 20D initial conditions that include extremes and do not.
Despite these clearly different sets of initial data, the algorithm uncovers dangerous benign conditions that
lead to extremes.

3 Discussion
The discovery, characterization, and ultimate prediction of extreme events remains a grand challenge across
application domains. Presented in figure 5, we propose an AI-assisted, model-agnostic infrastructure that
paves the way for efficient and robust inference of these critically important events. By combining deep neural
operators, Bayesian experimental design, and tailored acquisition functions, we create a framework that can
accurately discover, characterize, and predict extreme events in high-dimensional nonlinear systems ranging
from societal to physical. We demonstrate the efficacy of this framework here by efficiently discovering and
predicting rogue waves, reducing the number of samples from 107 to 102, and accurately pinpointing the
most dangerous pandemic spikes.

This approach is not only superior to other techniques, namely Gaussian Processes (GPs), but comes with
several expected and unexpected, yet preferable, consequences. As expected, we show that the use of DNOs
brings both greater generalization accuracy and a propensity for extremely large datasets. Unexpectedly,
we find that shallow ensembles of only two ensemble members perform remarkably well and that the use
of batches of optimal sample points acquired in parallel, compared to step-by-step, or serial, acquisition,
does not hinder BED performance. We also find that Monte Carlo approaches for selecting these optimal
points perform better than standard optimizers, which routinely fall victim to the highly non-convex nature
of high-dimensional optimization. These results bring crucial real-world benefits to our approach. Batching
permits parallel acquisition of data, while small ensembles keep computational costs tractable.

Our method also eliminates “double descent” phenomena and achieves accurate extreme event quantifi-
cation regardless of the state of initial data. Both observations underscore the importance of sampling the
most informative data rather than more data. Double descent is avoided as the acquisition function only
selects points that significantly contribute to the observed dynamics of the system, while ignoring data that
would bring added and unnecessary complexity. On the other hand, the method is robust to the initial data
provided and quickly directs attention to the most informative samples whether or not extremes have been
observed.

The framework also provides modularity for the chosen surrogate models and acquisition functions, so long
as the parameter and function spaces are appropriately defined. Critically, we separate the two. Regression
is performed in the functional space, while the search algorithm is performed in the parameter space via
a forward DNO coupling (i.e., through a linear transfer function from θ → u(x)). Any arbitrary neural
architecture leveraging this distinction may be implemented, such as standard feed-forward NNs, Fourier
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a) 20D b) 20D

c)

d)

Figure 4: Robustness to dimensionality and initial data, i.e., with or without extremes. a) The
log-PDF errors for three acquisition functions (LHS, US, and US-LW) for the 20D problem, with initial
points sampled via LHS and the prior pθ for US and US-LW. b) provides the same results in log-log form. c)
gives the real value of 10 complex LHS initial input functions u(x, t = 0), shaded with their corresponding
output value ||Re(u(x, t = τ))||∞ (left) and 10 DNO+BED acquired functions, via US-LW at iteration 97
(right). d) gives 10 initial input functions sampled from the prior distribution pθ (left) and the 10 acquired
function at iteration 74 (right).
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Figure 5: Efficient and robust DNO+BED framework for discovering and quantifying extremes.
An overview of the proposed Bayesian experimental design framework with deep neural operators and novel
acquisition functions for discovering extremes. Initialize) with a set of observed physical input-output pairs,
retained in their functional form. i) Pass functions to an ensemble of DNOs to learn sparse representations
of the underlying system. ii) Perform a fast Monte Carlo search of the DNO functional space for extremes.
iii) Compute statistics over a Monte Carlo ensemble and select new input functions that both explore and
exploit the space for extremes. iv) Evaluate proposed inputs on the underlying experiment or simulation,
record outputs, and pass to i). Repeat i)-iv) until statistics are converged or resources are depleted. End)
with an optimally trained DNO that supports prediction of extreme events.

Neural Operators [21], Convolutional NNs, Recurrent NNs, Long-Short Term Memory, among others. In
fact, this work did not explicitly investigate the full value of DeepONet for operator learning for BED. Instead,
only the standard feed-forward branch NN was used. Using the complete operator machinery only requires
adjusting the parameters related to the operator and trunk. Here, we kept these parameters constant.
Finally, while we focus on Bayesian experimental design, slight adjustments to the choice of acquisition
function allow for Bayesian Optimization tasks [22] or for approaching other metrics of interest (e.g. mean
squared error).

In conclusion, we believe we have demonstrated an equation-agnostic framework that: (1) efficiently dis-
covers extreme events, (2) is computationally tractable, and (3) presents a straightforward implementation
on any arbitrary input-output system. This creates a unique opportunity for experimentalists and compu-
tationalists alike to investigate their systems for extreme behavior, whether that behavior originates from
societal or physical systems or has beneficial or catastrophic consequences.

4 Methods
Our approach to Bayesian experimental design is detailed in figure 5 and consists of two critical components,
data selection criteria and the surrogate model. Algorithm 1 formalizes the iterative steps taken in figure 5
for efficiently training a surrogate model with minimal data selection.

4.1 Surrogate Models
We test two surrogate models in the BED framework, GPs as the benchmark case, and DNOs (specifically
DeepONet) for greater scaling and generalization performance. While both GPs and DNOs provide the
same role in the framework, their implementation is fundamentally different. Whereas GPs are used to map
random parameter inputs θ to an output f(θ), we use the DNOs to map an input function u = θΦ to an
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Algorithm 1 Sequential search for active learning/training of DNOs and GPs .

1: Input: Number of iterations: niter
2: Initialize: Train GP/DNO on initial dataset of input-output pairs

GP: D0 = {θi, yi = f(θi)}ninit
i=1 DNO: D0 = {θi, yi = G(θu,iΦ(x1, ...xm),θz,i)}ninit

i=1
3: for n = 1 to niter do
4: Select next point θn by minimizing∗ acquisition function a(θ):

∗Minimization using Monte Carlo, See Section 4.3 and Appendix F

θn = argmin
θ∈X

a(θ; y),Dn−1)

5: Evaluate objective function at xn and record yn
6: Augment dataset: Dn = Dn−1 ∪ θn, yn
7: Retrain GP/DNO.
8: end for
9: return Final GP/DNO Model

output function G(u = θΦ). In both cases, θ is the only independent variable and is maintained to provide
a means of searching for extremes in the parameter space. However, the proposed regression task for DNOs
ensures that the they perform their mapping in functional, or physical, space, rather than the parameter
space. This distinction is foundational for our approach and success with DNOs for BED.

We detail both GPs and DeepONet in detail in Appendices C and D, respectively, and only discuss our
approach for quantifying the predictive variance, σ2(θ), for DNOs using ensembles.

4.1.1 Ensemble of Neural Networks for Uncertainty Quantification

Although neural network architectures are attractive for approximating nonlinear regression tasks, their
complexity rids them of analytical expressions. This does not allow for a traditional Bayesian treatment
of uncertainty in the underlying surrogate model – a key property present for GP regression (see equation
22). Knowledge of the uncertainty of a surrogate model allows one to target model deficiencies as seen
in the parameter space. This means that choosing an appropriate method for quantifying the uncertainty
is a crucial and key component to active learning or BED. There are several techniques for quantifying
uncertainty in neural networks and we provide a brief description of these in Appendix D.1 and focus only
on ensemble methods.

Ensemble approaches have been used extensively throughout the literature [23, 24] and despite their
improved results for identifying the underlying tasks at hand [25], their utility for quantifying uncertainty in
a model remains a topic of debate. There are several approaches for creating ensembles. These include ran-
dom weight initialization[24], different network architectures (including activation functions), data shuffling,
data augmentation, bagging, bootstrapping, and snapshot ensembles [26, 27, 28] among others. Here we
employ random weight initialization, a technique found to perform similarly or better than BNN approaches
(Monte Carlo Dropout and Probablistic Backpropagation) for evaluation accuracy and out-of-distribution
detection for both classification and regression tasks [24]. As stated earlier, much of the field is skeptical
of the generality of ensembles to provide rigorous uncertainty estimates. However, recent studies, such as
[14] and specifically [15], have argued that DNN and DNO ensembles provide reasonable, if not superior,
approximations of the posterior. Finally, the straightforward implementation of the randomly initialized
weights motivates our choice, as it makes the adoption of these techniques far more probable.

We train N randomly weight-initialized DNO models, each denoted as G̃n, that find the associated
solution field y for inputs u and z. This allows us to then determine the point-wise variance of the models as

σ2(u, z) =
1

(N − 1)

N∑
n=1

(G̃n(u)(z)− G̃(u)(z))2, (3)

where G̃(u)(z) is the mean solution of the model ensemble. Finally, we must adjust the above representation
to match the description for BED. In the case of traditional BED and GPs, the input parameters, θ, represent
the union of two set of parameters, θu and θz. The parameters θu typically represent coefficients to a set of
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functions that represent a decomposition of a random function u = θuΦ(x1, ...xm), while θz = z represent
non-functional parameters of the operator. Thus, the DNO description for UQ may be recast as:

σ2(θ) = σ(θu ∪ θz) =
1

(N − 1)

N∑
n=1

(G̃n(θuΦ(x1, ...xm))(θz)− G̃(θuΦ(x1, ...xm))(θz))
2. (4)

4.2 Data Selection: Acquisition Functions
The acquisition function is the key component of the sequential search algorithm, as it guides algorithm 1 in
exploring the input/parameter space and determines points at which the objective function is to be queried.
Because of the lack of a closed analytical form of DNOs, we only consider two acquisition functions used
previously with GPs on several test cases in [16]. The two functions we are interested in are the commonly
used uncertainty sampling and the output-weighted uncertainty sampling proposed by [16]. The novelty here
is that we apply them explicitly to DNOs (DeepONet) and present the advantages of DNOs compared to
GPs as we apply them to a complex and high-dimensional problem.

4.2.1 Uncertainty Sampling

Uncertainty sampling (US) is one of the most broadly used active sampling techniques and identifies the
point where the predictive variance is the greatest,

aUS(θ) = σ2(θ). (5)

Uncertainty sampling, also known as the active-learning-MacKay (ALC) algorithm [29], imposes an sequential
search that evenly distributes uncertainty over the input space as it gains data. The popularity of US is
due to three qualities: ease of implementation, inexpensive evaluation (for small datasets with GPs), and
analytic gradients, the last of which permits the use of gradient-based optimizers.

4.2.2 Likelihood-Weighted Acquisition Functions

There are several “extreme event” likelihood-weighted acquisition functions that could be explored, as pro-
posed by [5], but we elect to only test the likelihood-weighted uncertainty sampling (US-LW) acquisition
because of its simplicity in implementation. For US-LW, we augment the US sampling acquisition function
with the previously described danger scores to give

aUS−LW (θ) = w(θ)σ2(θ), (6)

such that both highly uncertain and highly dangerous regions are sampled.
To compute w(θ), we note that the approximated output PDF, pµ(µ(θ)) is approximated via a kernel

density estimator with n = 106 test points. For the DNO cases, we chose to compute this with only the
first ensemble member, µ = G̃1, to reduce computational costs. Similar to the ensemble results for N = 2,
using only one ensemble member is akin to using Thompson sampling and performs without reduction in
performance.

4.2.3 Danger Maps and Log-PDF Error Metrics

To test the ability of the DNO and GP Bayesian-inspired sequential algorithms to quantify extremes, we
define a “Danger Map” for the pandemic scenarios and rogue waves. The rogue wave danger map is defined
as,

f(θ) = ||Re(u(x, t = T ;θ))||∞, (7)

where T = 20, while the pandemic danger map is,

f(θ) = I(t = T ;θ), (8)
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where T = 75 days. For each case, we then select a random set, chosen through Latin hypercube sampling,
of 105 test points, Θ ∈ Rd×105 and use a kernel density estimator to compute the true PDF pf (y), computed
as

pf (y) =

∫
θ

pf (y|Θ)pθ(Θ)|dθ, (9)

and the model’s prediction pµn(y) for the same test points, Θ. To determine whether the testing data
appropriately identifies extremes, we compute the log-PDF error

e(n) =

∫
| log10 pµn(y)− log10 pf (y)|dy. (10)

4.3 Monte Carlo Minimization of Acquisition Functions
In our experiments, we consistently observe that acquisition points found through minimizers using gradient
descent are not globally optimal. Instead, Monte Carlo evaluation of the DNOs and GPs consistently find
superior optima. This is chiefly because of the non-convexity of the acquisition function. We may recall the
highly non-convex behavior of the 2D acquisition fields in figure 2 b), even with as little as ≈ 5 samples. This
non-convex nature emits many local minima that requires many initial search points to provide confidence
that the chosen optima is nearly global. As the minimizer progresses for each iteration, it must call the
DNO or GP, whereas a Monte Carlo approach may efficiently evaluate all points in one vector operation.
This means that for the same computation time as the minimizers, Monte Carlo sampling may evaluate a
substantially larger distribution of query points and return acquisition points with superior scores than that
of the optimizer. In Appendix F we show that acquisition scores found via Monte Carlo at 20D consistently
outperform minimizers for similar computation times.

4.4 Experiment Batching
As systems become more complex, additional experiments/data are required to reduce errors for higher
dimensional cases, as observed in figure 3. Considering many experiments can be conducted in parallel,
we ask whether choosing multiple local minima of the acquisition function presents marginally reduced
performance than a purely sequential search. This is especially critical for situations where experimental
time is more costly than additional setups (e.g. protein or genetic design).

The purpose of batching is to find multiple regions of local optima of the acquisition function, rather than
finding several optima in the same region. To impose this idea, we create a constraint that no acquisition
point may reside closer than a distance rmin to each other. We define rmin as a fraction of the maximum
euclidean distance of the space being sampled,

rmin = rl

( D∑
d=1

(θd,+ − θd,−)2
)2

, (11)

where θd,+ and θd,− are the maximum and minimum domain bounds of each parameter dimension d and rl
is the user defined percentage. In this work, we chose a static rl = 0.025, but dynamic values based on the
packing of the parameter space would be an intriguing direction for increasing the efficacy of this approach.
Imposing this constraint requires an iterative processing of the acquisition scores, detailed in Algorithm 2.
For the batching applied in this study, each case uses a Monte Carlo querying of nq = 106 points.
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A SIR Pandemic Model
We implement a simple Susceptible, Infected, Recovered (SIR) model,

dS

dt
= −β(t)IS + δR (12)

dI

dt
= β(t)IS − γI (13)

dR

dt
= γI − δR, (14)

where δ is the rate of immunity loss, γ is the recovery rate, and β(t) is a stochastic infection rate. Here we
take δ = 0 and γ = 0.1 and the stochastic infection rate, β(t), is defined as

β(t) = β0(θΦ(t) + φ0), (15)

where Φ(t) is found via a Karhunen-Loeve expansion of a radial basis kernel with σ2
β = 0.1 and length scale

`β = 0.1 and φ0 = 2.15, to ensure all infection rates are non-negative. Initial conditions for the model are
I0 = 50 with total population P = 108, and a step size of 0.2 days is used.

B Dissipative Nonlinear Schrödinger Equation: Majda, McLaugh-
lin, and Tabak Model

The Majda, McLaughlin, and Tabak [30] model is a dissipative version of the nonlinear Schrödinger (NLS)
equation used for studying 1D wave turbulence. It is a one-dimensional, dispersive nonlinear prototype
model with intermittent events described by

iut = |∂x|α u+ λ |∂x|−β/4
(
||∂x|−β/4 u

∣∣∣2 |∂x|−β/4 u)+ iDu, (16)
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where u is a complex scalar, exponents α and β are chosen model parameters, and D is a selective Laplacian
(described further below). This model gives rise to four-wave resonant interactions that, especially when
coupled with large scale forcing and small scale damping, produces a family of spectra revealing both direct
and inverse cascades [30, 31]. A realization of the MMT model is shown in figure 6 that demonstrates these
complex dynamical properties. Not only does this model provide a rich dynamical response, but also presents
a unique utility as a physical model for extreme ocean waves, or rogue waves [32, 33, 34]. Hence, its study is
an ideal test bed for both examining the numerical difficulties of predictive models and uncovering insights
to physical, real-world applications.

For both ease of computation and for discussion of the terms in the MMT model, we transform the
equation into wavenumber space. The pseudodifferential operator |∂x|α, via the Fourier transform in space
becomes: ̂|∂x|α u(k) = |k|αû(k) where k is the wavenumber in x. This formulation may be similarly defined
on a periodic domain. We choose α = 1/2 and β = 0 as done in [35], reducing equation (16) to

û(k)t = −i|k|1/2û(k)− iλ|û(k)|2û(k) + D̂u(k) + f(k), (17)

where f(k) is a forcing and D̂u(k) is a selective Laplacian of the form:

D̂u(k) =

{
− (|k| − k∗)2 û(k) |k| > k∗

0 |k| ≤ k∗ (18)

where k∗ presents the lower bound of wavenumbers subject to dissipation. For the model considered in
this study we choose λ = −0.5, k∗ = 20, f(k) = 0, dt = 0.001, and a grid that is periodic between 0-1
with Nx = 512 grid points. To propose a stochastic and complex initial condition, u(x, t = 0), we take the
complex-valued kernel

k(x, x′) = σ2
ue
i(x−x′)e−

(x−x′)2
`u , (19)

with σ2
u = 1 and `u = 0.35. We then parametrize the stochastic initial conditions by a finite number of

random variables, θ, using the Karhunen-Loeve expansion of the kernel’s correlation matrix,

u(x, t = 0) ≈ θΦ(x), ∀ x ∈ [0, 1) (20)

where θ ∈ Cm is a vector of complex coefficients and both the real and imaginary components of each
coefficient are normally distributed with zero mean and diagonal covariance matrix Λ, and {Λ,Φ(x)} contains
the first m eigenpairs of the correlation matrix. This gives the dimension of the parameter space as 2m due
to the complex nature of the coefficients. For all cases, the random variable θi is restricted to a domain
ranging from -6 to 6, in that 6 standard deviations in each direction from the mean.

C Gaussian Process Regression
For low-dimensional problems, Gaussian process (GP) regression [36] is the “gold standard” for Bayesian
design. There are several attractive qualities of GPs. They are agnostic to the details of a black-box process
(just like neural networks described next) and they clearly quantify both the uncertainty in the model and
the uncertainty associated with noise. GPs are also relatively easy to implement and cheap to train.

A Gaussian process f̄(θ), where θ is a random variable, is completely specified by its mean function
m(θ) and covariance function k (θ,θ′). For a dataset D of input-output pairs ({Θ,y}) and a Gaussian
process with constant mean m0, the random process f̄(θ) conditioned on D follows a normal distribution
with posterior mean and variance

µ(θ) = m0 + k(θ,Θ)K−1 (y −m0) (21)

σ2(θ) = k(θ,θ)− k(θ,Θ)K−1k(Θ,θ) (22)

respectively, where K = k(Θ,Θ) + σ2
ε I. Equation (21) can predict the value of the surrogate model at any

point θ, and (22) to quantify uncertainty in prediction at that point [36]. Here, we chose the radial-basis-
function (RBF) kernel with automatic relevance determination (ARD),

k (θ,θ′) = σ2
f exp

[
− (θ − θ′)> L−1 (θ − θ′) /2

]
, (23)
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a) b)

Figure 6: The NLS emits many nonlinear phenomena in finite time, from focusing to dissipa-
tion.a) A realization of the NLS model (α = 1/2, β = 0, λ = −0.5) we discover with DNO+BED, where a
benign initial condition leads to an extreme, rogue wave. b) Wave height of selected times from a).

where L is a diagonal matrix containing the lengthscales for each dimension and the GP hyperparameters
appearing in the covariance function (σ2

f and L in (22) are trained by maximum likelihood estimation).
One setback from the above expression is the inference step in GP regression, where each iteration requires

the inversion of the matrix K. Typically performed by Cholesky decomposition, the inversion cost scales
as O(n3), with n being the number of observations [36, 37]. This means that as problems grow to infinite
dimensions, inevitably requiring larger datasets, GPs become prohibitively costly. We will show here that
as the need for data increases, GPs become much more computationally intensive than our next surrogate
model, neural networks.

D Deep Neural Operators and DeepONet
Unlike GPs, Deep Neural Operators or Deep Neural Networks, do not suffer from data-scaling challenges
and are our primary model class for consideration in this manuscript. Deep Neural Networks, when cast as
neural operators[38], are specifically well-suited for characterizing infinite dimensional systems, as they may
map functional inputs to functional outputs. Although our work is general for any neural network approach,
we leverage the architecture proposed by [6] for approximating nonlinear operators: DeepONet.

DeepONet seeks approximations of nonlinear operators by constructing two deep neural networks, one
representing the input function at a fixed number of sensors and another for encoding the “locations” of
evaluation of the output function. The first neural network, termed the “branch”, takes input functions,
u, observed at discrete sensors, xi, i = 1...m. These input functions can take on several representations,
such as initial conditions (i.e. u0) or forcing functions. The second neural network, termed the “trunk”,
should be seen as an encoder for inherent qualities of the operator, denoted as z (referred to as y in [6], but
changed here for typical active sampling notation). For example, a variable coefficient or exponent in the
true nonlinear operator, G, alternatively, and the usual use case for DeepONet, the trunk variable can refer
to the evaluation of the operation to an arbitrary point in time and/or space. Together, these networks seek
to approximate the nonlinear operation upon u and z as G(u)(z) = y, where y will denote the scalar output
from the u, z input pair.

Given a set of input-output pairs, {[u, z], G(u)(z)}, DeepONet seeks to minimize the difference between
the true operator, G(u)(z), and the dot product between two neural networks g(u) and f(z). These network’s
level of expressivity is governed by the number of neurons (n), the number of layers (lb, lt for branch and
trunk, respectively), and activation functions. Under sufficient training DeepONet can meet any arbitrary
error, ε, as

| G(u)(z)− 〈g (u (x1) , u (x2) , · · · , u (xm))︸ ︷︷ ︸
branch

, f(z)︸︷︷︸
trunk

〉| < ε. (24)
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Thus, DeepONet can, to an arbitrarily small precision, approximate an infinite dimensional nonlinear oper-
ator G(u)(z). However, the functions g and f are typically trained under the assumption of plentiful data.
We are interested in how DeepONet can be optimally trained, in that with the least amount of data, for
discovering and quantifying extreme events.

DeepONet is attractive for these tasks as neural nets generalize well and are incredibly fast to evaluate
(compared to their experimental/simulation counterparts) for arbitrarily chosen points. However, there is
little work on how one optimally selects the best samples to train a neural net. Previously, the approach taken
has included creating an appropriate basis for specific operators that are used to train DeepONet [39]. For
the problems we are interested (i.e. rare and extreme events), this appropriate basis is unknown. Therefore,
we envision DeepONet will provide a flexible model to learn seen data, and then provide early predictions
of where danger and uncertainty lie in the input/output space through DeepONet’s parameterization, that
we may then query the underlying system to best inform DeepONet.

D.1 Approaches for quantifying uncertainty in Deep Neural Networks
There are several techniques for quantifying uncertainty in neural networks and three categorizations of these
techniques we wish to mention: single deterministic networks, Bayesian neural network (BNN) inference ap-
proaches, and ensemble methods (see [40] and [41] for comprehensive reviews of these methods for uncertainty
quantification). Unfortunately, a complex array of advantages and disadvantages of each approach provides
no clear favorite. Single deterministic methods [42, 43] use one forward pass of a deterministic network
to learn both the mean and variance of a labeled output. Using only one model leads to cheap training
and evaluation. However, this single opinion of the underlying system results in substantial sensitivity, an
unattractive quality for regression problems quantifying physical instabilities/extreme events. Bayesian neu-
ral networks [44, 45, 46, 15] encompass a broad variety of stochastic DNNs that combine Bayesian inference
theory with the expressiveness, scalability, and predictive performance enjoyed by deep neural networks. Al-
though the supporting theory behind Bayesian methods, as well as empirical results, imparts faith that such
models will lead to the greatest chance of success, they do come with a significant disadvantage, complexity.
BNNs are significantly more complex than standard neural networks and can be exhausting to train, making
them difficult to implement. From an academic viewpoint, this can be overcome. However, as a study
concerned with translating DNNs and active learning to practical engineering systems that solve real-world
problems, we opt for using the straight-forward ensemble approach. An approach that seats itself between
the single deterministic model and the infinite model representations of BNNs.

E DeepONet Setup
Application of the NLS and SIR models to the DeepONet architecture requires a well-posed distinction
between the functions and parameters that belong in the branch and trunk networks. Figure 7 provides a
visual of the function/parameter delineations and the architecture for each modeling task.

In this work, we provide all input initial conditions as functions to the branch network. Because of the
requirement that all inputs to DeepONet take on real values, the NLS setup requires that we split the input
function, u, into its real (ur) and imaginary (ui) components. It is critical to keep both components, as
each contains unique and coupled information that is propagated in the NLS operation (this is not necessary
for the real-valued SIR model). We then stack these components as a vector by x position/sensor with the
imaginary component directly following the real component at each x position. Technically, the ordering of
the inputs does not matter, due to the linear nature of the first layer, but the ordering of the inputs must
remain consistent. For increased speed, we also reduce the sensor number of xm sensors from the 512 used for
the direct NLS calculation to 128 points for DeepONet (this corresponds to 256 total inputs values because
of the real and imaginary components) and 125 points for the SIR infection rate. We also give the length
scale and variance as input parameters, as they define the kernel that emits the Karhunen-Loeve expansion
functions. The input functions directly recognize adjustments to these parameters.

The trunk contains parameters that are intrinsic to the NLS and SIR operations. For NLS, these comprise
both time and space (t, x) and the chosen constants α, β, λ, k∗. Regarding BED, we may assign each of these
parameters to an appropriate prior distribution, such as uniform for space and time. In this study, we
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DeepONet: NLS with Stacked Real and Imaginary Inputs
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DeepONet: SIR Pandemic Model
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Figure 7: The application of the NLS and SIR operators to DeepONet.

Case Neurons Branch Layers Ensemble Size Experiments
2− 6D 200 5 10 10

8D Batching 200 5 10 10
8D Ensemble, n ≤ 2500 200 5 2,4,8,16 10
8D Ensemble, n > 2500 200 6 2,4,8,16 10

20D, n ≤ 2500 200 5 2 25
20D, n > 2500 200 6 2 25

Table 1: Hyperparameters used for all cases. All trunk layers = 1 due to their redundancy.

choose all values to remain constant and although the trunk is straightforward to implement; it is simply a
redundant network here.

We provide the hyperparameters and other quantities used for the various NLS cases performed through-
out the manuscript in table 1. In addition to the hyperparameters, we use the ReLu activation function,
a learning rate of lr = 0.001, and 1000 epochs for each training procedure. For the SIR search, the same
hyperparameters are used with 6 branch layers, 1 redundant trunk layer, and 200 neurons.

F Monte Carlo Minimization at 20D

Here we show that acquisition points found through Monte Carlo (MC) searches are consistently superior
than those selected by minimizers using gradient descent algorithms (when reasonably similar computation
times are considered). To demonstrate this behavior, we test four methods for finding 50 batched acquisition
points for the 20D NLS case at 500, 2500, and 5000 training samples, N = 2 ensemble members, and over 25
independent experiments. The four approaches are listed below, with each case choosing the 50 best points
with algorithm 2:

1. L-BFGS-B algorithm, implemented within the scipy Python package, 102 random LHS initial points.

2. MC with 105 random uniform initial points (sampled from a uniform distribution for speed)

3. MC with 105, best 100 points (algorithm 2) passed to L-BFGS-B.

4. MC with 106 random uniform initial points.

Table 2 and table 3 provide the mean computation times and scores for all cases, respectively. The mean
computation times (± one standard deviation) are clearly faster for MC methods, by 5-fold, compared to
any approach with the L-BFGS-B algorithms. We also note that only the first ensemble member is used for
computing and querying pµ for speed, as well as likely better performance.

Table 3 provides the mean scores (over all chosen batch points and experiments, n = 1250), as well
as the mean best and worst point for each experiment (n = 25). It is critical to note that at these high
dimensions the difference between acquisition scores can be hundreds of orders of magnitude different (this
is a direct result of weights define by the ratio of two PDFs computed over 20 dimensions). To navigate this
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Samples L-BFGS-B MC: 105 MC+L-BFGS-B MC: 106

500 122± 7 3.6± 0.1 123± 5 27± 1
2500 126± 6 4.0± 0.2 125± 5 26± 2
5000 127± 8 3.7± 0.1 135± 7 27± 3

Table 2: MC is faster than built-in optimizers. Mean compute times (n = 25) for batch minimization
(nb = 50) of the the 20D US-LW acquisition function with ± one standard deviation. Best values are bold.

Samples L-BFGS-B MC: 105 MC+L-BFGS-B MC: 106

Mean (n = 1250)
500 110± 18 70± 5 66± 6 60± 4
2500 104± 16 67± 5 63± 5 56± 4
5000 110± 17 76± 4 67± 8 64± 4

Min n = 25
500 42± 32 57± 6 53± 16 52± 5
2500 44± 32 53± 4 48± 10 47± 6
5000 53± 21 60± 5 48± 11 54± 3

Max n = 25
500 126± 7 73± 3 70± 3 63± 3
2500 117± 6 70± 3 65± 3 60± 3
5000 125± 5 80± 2 72± 2 67± 2

Table 3: MC optimization provides consistently superior acquisition scores over built-in op-
timizers. Top rows: The mean and standard deviation of all 1250 chosen acquisition points for the four
methods on DNOs trained with 500, 2500, and 5000 samples. Middle rows: The mean and standard deviation
of the best acquisition points for the 25 experiments. Bottom rows: The mean and standard deviation of
the worst chosen acquisition points (i.e. the least optimal point of the batch). All values are − log10(a(θ)).
Best values are bold.

computational challenge, we take the log10 of the scores and apply a negative sign such that lower scores
are optimal (i.e. − log10(a(θ))). Considering the mean of all chosen points, we see that a naive use of the
L-BFGS-B minimizer finds scores that are ≈ 50 orders of magnitude worse than the 106 MC approach,
regardless of the training complexity of the model. The L-BFGS-B minimizer only provides a marginal
advantage for finding the best point in any random instance, however, the standard deviation is 30 orders
of magnitude and suggests the approach is terribly inconsistent. Juxtaposing the min and max results, we
see that the MC method only varies by approximately 10 orders of magnitude compared to the 80 orders of
the L-BFGS-B.

Overall, the MC method provides greater consistency in finding several attractive acquisition points,
while also enjoying ease of implementation and better computational efficiency. Of course, if given enough
computational resources and time, the L-BFGS-B method permits pinpointing exceptional acquisition points.
Approaches combining both MC and L-BFGS-B, where the MC points are further optimized (as also imple-
mented here) or performed from more LHS points, can either refine or enrich the set of acquisition points.

We believe the results found here are chiefly because of the non-convexity of the acquisition function.
We may recall the highly non-convex behavior of the 2D acquisition fields in figure 2b), even with as little as
≈ 10 samples. This non-convex nature emits many local minima that requires many initial points to provide
confidence that the chosen optima is nearly global. This makes the task for built in minimizers extremely
difficult, especially for high dimensional problems, and lead to minimizations that become easily fooled or
stuck. This difficulty is so challenging that the sparse MC sampling of only 106 points, an extremely sparse
sampling of a 20D space, easily outperforms the minimizers.
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